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Abstract. Randomness extractors provide a generic way of converting sources of randomness that are
merely unpredictable into almost uniformly random bits. While in general, deterministic randomness
extraction is impossible, it is possible if the source has some structural constraints.

While much of the literature on deterministic extraction has focused on sources with strong indepen-
dence properties, a natural class where deterministic extraction is possible is sources that can sampled
by a polynomial size circuit, Levin [SIAM J Comp’86]. Trevisan and Vadhan [FOCS’00] explicitly con-
structed deterministic randomness extractors for this class of sources, assuming very strong circuit
lower bounds.

We suggest that there is perhaps an even more reasonable model of natural sources of randomness than
Levin’s: sources sampled by polynomial size quantum circuits. Under a suitable circuit lower bound,
we show that Trevisan and Vadhan’s extractor indeed works for this class.

Along the way, we substantially improve their analysis in the classical case, showing that a circuit lower
bound against NP-circuits suffice in the classical case (as opposed to a lower bounds on Σ5-circuits, as
shown by Trevisan and Vadhan). Moreover, we show that under this assumption, it is possible to handle
sources sampled by postselecting circuits (a variant of nondeterministic circuits). We show that this
model is sufficient to capture randomness extraction in the presence of efficiently computable leakage.

1 Introduction

Randomness is an essential resource in computing. It is necessary for nearly all cryptographic tasks,
such as achieving semantically secure symmetric key encryption. Similarly, many fundamental tasks
in the domain of distributed computing, such as byzantine agreement or testing equality of two
strings with low communication, are impossible to achieve deterministically. In a similar vein,
certain tasks in differential privacy are also impossible without randomness.

Yet, where do these random bits come from? When constructing randomized protocols or proce-
dures, the protocol/procedure designer almost always assumes access to independent, unbiased ran-
dom bits. However, natural sources of randomness available to our machines are almost invariably
far from such idealized sources of randomness, and moreover the particulars of their distributions
are unknown to us. The question then becomes what algorithmic tasks can be accomplished with
access to weakly random sources. Randomness extractors provide a generic means of deterministi-
cally converting a weakly random source into (almost) uniformly random independent bits, so that
we may use constructions in our idealized models. This motivates the following general question:

Can we deterministically extract uniformly random bits from naturally occurring weakly
random sources?

It is well known that deterministic extraction from arbitrary weakly random sources is impossi-
ble, but is possible if the sources have some structure. While one rich line of work on deterministic
(or seedless) randomness extractors has studied sources with strong independence properties, it is
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unclear if naturally occurring sources can be assumed to be independent.1 The extended Church-
Turing thesis motivates another model for naturally occurring entropic sources: sources sampled by
polynomial size circuits. [16] Indeed, Trevisan and Vadhan constructed efficient extractors for such
classes. [26]

The starting point of the present work is the simple observation that the universe, and hence
natural sources, are generated by quantum phenomena. And even if quantum computing never
materializes in practice, it is quite plausible that local natural physical phenomena cannot be
efficiently simulated by classical circuits, but can be efficiently simulated by theoretical quantum
circuits.

1.1 Our Results

We demonstrate that it is possible to deterministically (classically) extract random bits from weakly
random sources sampled by polynomial size quantum circuits, assuming lower bounds on quantum
circuits with postselection, a nondeterministic analog of quantum circuits. In fact, we show it is
possible to deterministically extract random bits from a significantly larger, nondeterministic class
of sources. Importantly, this implies the ability to extract randomness after observing arbitrary
efficiently computed leakage on the source (provided some entropy remains after seeing the leakage).

Additionally, we improve what is known in the classical case. We show that it is possible to
extract randomness from sources that are samplable by polynomial size circuits assuming lower
bounds on nondeterministic circuits (as opposed to circuits with gates computing Σ5-complete
problems, as is the case in [26]).2 Again, we show that indeed it is possible to extract from a larger
class that includes sources uniform over a set recognized by a polynomial size circuit (also known
as recognizable sources [21]), from the same assumption. Prior to our work, similar results were
only known assuming lower bounds on Σ3-circuits. [3]

3

In all cases, we can extract almost all the randomness from sources with linear min-entropy
(there exists γ > 0 such that for all x, Pr[X = x] ≤ 2−(1−γ)n, where n is the length of the source).
Unfortunately, like all prior work, the output of our extractors is only inverse-polynomially close
to uniform.4

Classical and quantum postselecting samplers. We consider a notion of nondeterministic samplers
that generalizes samplable sources. We say that a source X (supported on {0, 1}n) is sampled
by a postselecting circuit C (in a class C), if C outputs n + 1 bits, C → (x, b) such that X is
identically distributed to the distribution sampled by C, conditioned on b = 1, namely Pr[X =
x′] = Pr

C→(x,b)
[x = x′|b = 1] for all x′. In particular, we are concerned with the case that the class C

is either (randomized) polynomial size classical circuits, in which case we say the source is samplable
by postselecting circuits, or C is polynomial size quantum circuits (with sufficient min-entropy), in
which case we say the source is samplable by postselecting quantum circuits.

Note that sources sampled by postselecting classical polynomial size circuits correspond to
sources sampled by polynomial size circuits whose random bits may themselves be drawn uniformly

1 Moreover, even very limited quantitative relaxations of independence quickly render extraction impossible. [8,4]
2 If the samplable source has very high min entropy, n−O(logn), then it was known how to extract from hardness
against non-deterministic circuits. [26]

3 Again, if the recognizable source was known to have very high min-entropy, n−O(logn) it is known how to extract
from lower bounds on deterministic circuits. [17].

4 Applebaum et al. showed that this inherent in all black-box nondeterministic reductions. [3]

2



from a set recognized by a polynomial size circuit. Clearly, this class generalizes both samplable
and recognizable sources.5

A motivation for considering such classes of sources is that they capture samplable sources
induced by external observation or side-channel leakage. For example, it is unlikely that a physical
source exists in a vacuum and is only observed by the extractor itself. If the extractor works for
nondetermnistic samplable sources, then so long as the source has enough conditional min-entropy,
then the output of the extractor will be independent of the leakage (and safe to use in a sensitive
task).

Nondeterministic circuit models and hardness. Before stating our results, we must briefly describe
the circuit classes we assume hardness against.

A classical nondeterministic circuit, C can be thought of as a deterministic circuit C ′ that
takes input, x and a witness, w: for any input x, C(x) = 1 if and only there exists w such that
C ′(x,w) = 1.

In the quantum regime, we are concerned with a fairly strong analog of nondeterminism: quan-
tum circuits with postselection [1]. These are quantum circuits (with classical description) that can
condition on a measurement being 1 before the output is measured. We say that such a circuit de-
cides a language if such a circuit (conditioned on the first measurement outcome being 1) disagrees
with the language on any input x with probability at most 1/3.

Both of these circuit classes are quite strong. In particular, uniform polytime quantum compu-
tation with postselection, PostBQP is known to be equivalent to PP [1]. However, it is nonetheless
reasonable to conjecture that there are classical deterministic computations which do not admit
superpolynomial speedups even if the computation is both non-uniform and nondeterministic or
non-uniform, quantum, and postselecting.

The former classical assumption has been considered before in the context of derandomizing
AM [18]. We are not aware of a situation where the latter assumption has been made, but the
connection with PP gives a classical interpretation: a set admits a postselecting quantum circuit
family if and only if there is a family of randomized classical circuits that accept every string in
the language with probability strictly greater than 1/2, and reject every string not in the set with
probability at least 1/2.

Main Theorems. Now we can (informally) state our results. Our main classical result is the follow-
ing:

Informal Theorem 1 (Extractors for Classical Sources (Theorem 2)) If there is a prob-
lem in E = DTIME(2O(n)) with nondeterministic circuit complexity 2Ω(n), then for any constant
c, there is an explicit deterministic extractor for sources samplableable by size nc postselecting cir-
cuits with linear min-entropy (whose output is 1/poly(n)-close to uniform).

Our main quantum theorem is the following:

Informal Theorem 2 (Extractors for Quantum Sources (Theorem 3)) If there is a prob-
lem in E = DTIME(2O(n)) with postselecting quantum circuit complexity 2Ω(n), then for any
constant c, there is an explicit deterministic extractor for sources samplable by size nc postselecting
quantum circuits with linear min-entropy (whose output is 1/poly(n)-close to uniform).

5 Guo et al. [14] consider a similar analog in the algebraic setting: sources sampled by polynomials evaluated on
varieties (generalizing polynomial sources [12] and variety sources [11].
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We remark that regardless of whether this strong hardness assumption is true, explicit hard
functions for postselecting quantum circuits are required to extract from this source class.

In both cases, our extractor is essentially the same extractor as that of Trevisan and Vadhan. [26]
If f is an E-complete problem, f̃ is its low degree extension, and 2Ext is a sufficiently good two-
source extractor, our extractor will simply be Ext(x, i) = 2Ext(f̃(x), i).

Where our result differs from Trevisan and Vadhan’s is that we give a novel analysis of the
extractor. At the core of our analysis are new nondeterministic algorithms for an optimal parameter
agnostic learning problem we call gap probability maximization. We refer the reader to the detailed
technical overview below for details.

2 Detailed Technical Overview

In this section, we explain in detail our approach to lifting Trevisan and Vadhan’s proof that a hard
function for Σ5-circuits gives a good extractor for samplable sources [26] to the quantum realm.
Through this explanation, it will become clear how we extend this result to nondeterministically
samplable sources, as well as how we reduce the Σ5 hardness requirement all the way to Σ1.

As a warmup, we will describe how to lift Trevisan and Vadhan’s proof that a boolean function
f hard on average for NP-circuits is itself a good extractor [26]. The classical argument for this
goes as follows: Let S be a flat (i.e. all outputs in the support have equal probability) source biasing
f to 1. Then the following NP-circuit can compute f(x):

On input x, nondeterministically check if x is in the range of S, and if so output 1. Otherwise,
output a random bit.

This approach can be augmented to non-flat S as long as we can solve the probability estimation
problem, which asks that given a randomized circuit C and an output x, compute Pr

r
[C(r) → x]

up to (1 ± ϵ) multiplicative error. However, it is known that NP-circuits can solve the probability
estimation problem in size polynomial in size(C). This means that if f is hard for NP-circuits of
size s, then it is an extractor for sources samplable by s − O(n)-size circuits for some concrete
polynomial.

To extend this argument to the quantum world, all that is necessary is that we be able to do
quantum probability estimation. That is, we need some model that can solve the following problem:
given a quantum circuit C and an output x, compute Pr

r
[C(r) → x] up to (1 ± ϵ) multiplicative

error.

It turns out that to solve this problem for quantum circuits, we require quantum circuits with
postselection (for more details on this equivalence see Section B). Postselection refers to the ability
for algorithms to conditionally sample. In the quantum setting, this refers to the ability for quan-
tum algorithms to produce the residual state resulting from measuring in the standard basis and
receiving result 1. Thus, a postselecting circuit is a quantum circuit with the additional ability to
postselect.

Quantum circuits with postselection are considered in depth by Aaronson in [1]. It is not known
how to implement postselection with a quantum computer, but it does not directly contradict the
laws of quantum mechanics. In particular, Aaronson shows that PostBQP, the class of uniform
postselecting circuits, is equivalent to PP.

4



Solving probability estimation using postselecting circuits implies that if a function is hard on
average for quantum circuits with postselection, then it is an extractor for quantum samplable
sources. However, it would be better to be able to show extraction from a worst-case assumption.
In fact, Trevisan and Vadhan were able to extend their average case classical result to a worst-case
hardness assumption, resulting in the following-theorem:

Theorem 1. If there is a problem in E = DTIME(2O(n)) with Σ5-circuit complexity 2Ω(n) for
all n, then there is a constant δ > 0 such that for all n, there is a ((1 − δ)n, 1/n)-deterministic
extractor Extn,s : {0, 1}n → {0, 1}(1−O(δ))n against circuit-size nc such that Extn,s is computable in
time poly(nc) (with exponent depending on δ).

As postselecting hardness was enough to lift the average case variation of this theorem to the
quantum setting, we postulate (and will later prove) the following quantumization:

Proposition 1. If there is a problem in E = DTIME(2O(n)) with postselecting quantum circuit
complexity 2Ω(n), then there is a constant δ > 0 such that for all n, there is a ((1 − δ)n, 1/n)-
deterministic extractor Extn,s : {0, 1}n → {0, 1}(1−O(δ))n against circuit-size nc such that Extn,s is
computable in time poly(nc) (with exponent depending on δ).

One would hope that the same technique as in the average case hardness argument would apply
when quantumizing this result. However, the proof for Theorem 1 relies strongly on the fact that Σi

circuits can do probability estimation for Σi−1 circuits. In fact, the proof involves several instances
of such “ladder-climbing”, accomplishing some task on Σi−1 circuits using Σi circuits.

It is not clear how one would do “ladder-climbing” for postselecting quantum circuits. One
may hope that postselecting quantum circuits themselves can accomplish tasks like probability
estimation for postselecting quantum circuits. Unfortunately, this seems unlikely to be true. We
note that since PostBQP = PP , PH ⊆ PPostBQP = P#P . This doesn’t say anything definitive,
but it is not clear how to reduce adaptive counting queries to a single threshold query. To provide
more concrete evidence, we show in Sections 4.2 and 4.3 a concrete problem on quantum circuits,
solvable by postselecting quantum circuits, for which the natural approach will not extend to a
solution for postselecting quantum circuits.

One may wonder whether “ladder-climbing” is necessary to construct extractors from worst-
case hardness assumptions. We show that it is not necessary, giving us the following improvement
to Trevisan and Vadhan’s classical result.

Proposition 2. If there is a problem in E = DTIME(2O(n)) with NP||-circuit complexity 2Ω(n)

for all n, then there is a constant δ > 0 such that for all n, there is a ((1− δ)n, 1/n)-deterministic
extractor Extn,s : {0, 1}n → {0, 1}(1−O(δ))n against circuit-size nc such that Extn,s is computable in
time poly(nc) (with exponent depending on δ).

Our proof for this improvement will indeed lift easily to the quantum setting, allowing us to
prove Proposition 1. In fact, in our main body we will prove both theorems simultaneously.

Note that Theorem 1 has a nondeterminism gap. That is, we require hardness against Σ5-circuits
to obtain extractors for deterministic sources.

In fact, a small modification to our proof technique improves the result so that it provides
extractors for postselecting (classically) samplable sources, and this improvement trivially lifts to
the quantum setting. Informally, we call a source S a postselecting samplable source if there exists

5



a circuit C outputting x, b such that S is the distribution on x conditioned on b = 1. That is, if
b = f(r) for some efficient f , we give the circuit the ability to uniformly sample from f−1(1). In
general, this task can be implemented by an NP-circuit [15,5], and so this class of sources is slightly
weaker than those samplable by NP-circuits.6

We observe that both samplable and recongnizable sources are samplable by postselecting cir-
cuits. Any sampling circuit C gives a postselecting sampling circuit C ′ by setting C ′(r) = (C(r), 1).
Any recognizing circuit C gives a postselecting sampling circuit C ′ by setting C ′(r) = (r, C(r)).

Formally, our main results are captured by the following theorems:

Theorem 2. If there is a problem in E = DTIME(2O(n)) with NP||-circuit complexity 2Ω(n) for
all n, then there is a constant δ > 0 such that for all n, there is a ((1 − δ)n, 1/n)-deterministic
extractor Extn,s : {0, 1}n → {0, 1}(1−O(δ))n against postselecting circuit-size nc such that Extn,s is
computable in time poly(nc) (with exponent depending on δ).

Moreover, because our reduction makes nonadaptive queries (and hence we only need to assume
that E is hard for exponential size circuits that make nonadaptive NP queries), we need only
assume hardness against nondeterministic circuits by using a collapse theorem due to Shaltiel and
Umans [23].

Corollary 1. If there is a problem in E = DTIME(2O(n)) with nondeterministic-circuit complex-
ity 2Ω(n) for all n, then there is a constant δ > 0 such that for all n, there is a ((1 − δ)n, 1/n)-
deterministic extractor Extn,s : {0, 1}n → {0, 1}(1−O(δ))n against postselecting circuit-size nc such
that Extn,s is computable in time poly(nc) (with exponent depending on δ).

Theorem 3. If there is a problem in E = DTIME(2O(n)) with postselecting quantum circuit
complexity 2Ω(n) for all n, then there is a constant δ > 0 such that for all n, there is a ((1−δ)n, 1/n)-
deterministic extractor Extn,s : {0, 1}n → {0, 1}(1−O(δ))n against postselecting quantum circuit-size
nc such that Extn,s is computable in time poly(nc) (with exponent depending on δ).

[1] shows that a PP oracle can simulate postselecting quantum computation. Thus, we get the
following corollary

Corollary 2. If there is a problem in E = DTIME(2O(n)) with PP -circuit complexity 2Ω(n) for
all n, then there is a constant δ > 0 such that for all n, there is a ((1 − δ)n, 1/n)-deterministic
extractor Extn,s : {0, 1}n → {0, 1}(1−O(δ))n against postselecting quantum circuit-size nc such that
Extn,s is computable in time poly(nc) (with exponent depending on δ).

2.1 Classical extractors from ladder-climbing

For the beginning of this overview, we only discuss extractors with one bit output. The extension
to multi-bit output is discussed in Section 2.5

To generate an extractor from worst-case hardness, Trevisan and Vadhan rely on two ladder
climbing techniques:

6 In fact, it turns out that our notion of postselecting samplable sources is more powerful than sources samplable by
“single-valued nondeterministic circuits,” [19,22] a generalization of NP ∩ coNP to (a) computing functions, and
(b) the non-uniform setting (which we won’t formally define here). A simple rejection sampling argument implies
that any extractor for the class of sources samplable by single-valued nondeterministic sources must be a hard
to compute function for this class. It follows that hardness for this computational is indeed necessary in order to
extract from postselecting samplable sources. Moreover, E being hard for exponential size nondeterministic circuits
is in fact equivalent to E being hard for exponential size single-valued nondeterministic circuits. [22,2]
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1. Probability estimation: Given a Σi−1-circuit C, there is a Σi-circuit estimating Pr
r
[C(r) → x]

to a (1± ϵ) multiplicative factor.

2. Uniform sampling: Given a boolean Σi−1-circuit C, there is a Σi-circuit sampling uniformly
from C−1(1).

These ladder climbing techniques can prove the following two claims:

1. There is a very good worst-to-average case reduction for polynomial evaluation stepping up the
ladder.

2. For functions E(·, ·) satisfying a ”combinatorial list-decoding” property, there is a very efficient
way to find points biasing E(·,S) for samplable S

Stated more formally,

1. For a degree d polynomial p : Ft → F, given a size-s Σi which computes p correctly on a c
√
d/|F|

fraction of points, there is a size-poly(s) Σi+2 circuit which computes p everywhere.

2. There exists a probabilistic Σi+2-circuit DECODE of polynomial size such that the following
holds: Let S be a source of density δ samplable by size-s Σi-circuits. Let E(·, ·) be a boolean func-
tion computable by size-poly(n) circuits satisfying combinatorial list-decoding. If E(w,C(r)) is
ϵ-biased to 1, then C(S, ϵ) = w with probability Ω(δϵ2)

Trevisan and Vadhan use these claims to show that if you have a samplable distribution (X, I)
of density δ which biases E(p(x), i), then there is a Σ5-circuit computing p(x) everywhere. The
approach here is simple: if Ix is the distribution I conditioned on X = x, then DECODE(Ix)
is a Σ3-circuit computing p(x) with some small probability. Then, the very efficient worst-to-
average case reduction gives a Σ5-circuit computing p(x) everywhere. This immediately gives that
EXT (x, i) := E(p(x), i) is a good 1-bit extractor. Some additional care (but no further levels of
nondeterminism) are required to extend this proof to multi-bit outputs.

For the proof of both of these claims, the two ladder climbing techniques described at the
beginning of this section are used in sequence. For expository purposes, we will sketch the proof of
the worst to average reduction for polynomial decoding.

2.2 Strong worst to average case reductions from ladder climbing

The proof they use for this claim relies on the following lemma from [25].

Lemma 1. Let C be any function and let Lz,x := (1 − t)z + x denote the line between z and x.
Then there exists a z ∈ F, γ > 0, such that for 15/16 of the values of x,
- Pr
F→u

[p(Lz,x(u)) = C(Lz,x(u))] ≥ γ
-For all univariate degree d h : F → F such that h ̸= p ◦ Lz,x, either h(0) ̸= z or Pr

F→u
[h(u) =

C(Lz,x(u))] ≤
γ

2
.

Let C be a Σi circuit evaluating p(x) on a c
√
d/|F| fraction of points.

We define C ′ to be the circuit which takes in a univariate h, chooses a random u from F, and
outputs 1 if h(0) = z and h(u) = C(Lz,x(u)).
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We further define C ′′ to be the Σi+1-circuit which takes an input x, gets an estimate γ̃ for

Pr[C ′(x) = 1], and outputs 1 if γ̃ ≥ 3

4
γ. The key lemma immediately shows that the only input

accepted by C ′′ is p ◦ Lz,x

It is then clear that running uniform sampling on C ′′ will find p ◦ Lz,x with high probability,
and so outputting (p ◦ Lz,x)(1) will find p(x) with high probability.

2.3 Our techniques

Our key observation comes from the fact that the purpose of running uniform sampling and prob-
ability estimation in sequence is to solve a task we call the gap probability maximization problem.
We define this problem as follows:

Say we are given a boolean randomized algorithm C̃ and a constant γ with the following promise:

1. There exists some x∗ such that Pr[C̃(x∗)→ 1] ≥ γ
2. For all x ̸= x∗, Pr[C̃(x)→ 1] ≤ γ

2

The GPM problem asks us to find x∗.

We show in Section 4 that the gap maximization problem can be solved for an input circuit
C̃ by an NP -circuit C. Moreover, this circuit C only needs non-adaptive calls to the NP gates.
This means that one only needs to step up the hierarchy once in order to achieve highly efficient
worst to average case reductions for polynomial decoding, as well as bias finding for codes satisfying
combinatorial list decoding. Thus, this observation immediately reduces our hardness assumption
to hardness for Σ3-circuits.

To get us all the way down to nondeterministic circuits, we note that gap probability maxi-
mization can be used to directly compute p(x) using a source which biases our extractor. Once we
have trimmed the layers of nondeterminism produced by stacking uniform sampling and probability
estimation, the extra layers of nondeterminism are purely an artifact of modularity. This gets us to
NP-circuits that use their NP gates non-adaptively. From there, we can apply a result of Shaltiel
and Umans [24] that implies that if E is hard for exponential size nondeterministic circuits, then
E is hard for exponential size non-adaptive NP-circuits.

The essential ingredient for combining the two claims used by Trevisan and Vadhan is the
following improved key lemma

Lemma 2. Let F = GF (2n
′
) be a field of size q = 2n

′
. Let p : Ft → F be any degree d polynomial,

let E : F×{0, 1}n′ → {0, 1}m satisfy (2−4m, 2−0.1n
′
, 20.2n

′
)-combinatorial list decoding, and let S be

any distribution of density δ such that∣∣∣∣ Pr
S→(u,i)

[E(p(u), i) = 1]− 1

2m

∣∣∣∣ ≥ ϵ

2m
.

For any ϵ, δ satisfying

d

q
≤ ϵ2δ2

64 · 20.4n′+2m

ϵδ ≥ 128 · 2m−0.1n′
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the following holds: There exists a z such that for
15

16
values of x,

-

∣∣∣∣ Pr
S→(u,i)

[E(p(u), i) = 1|u ∈ Lz,x]−
1

2m

∣∣∣∣ ≥ ϵ

3 · 2m

- For all h : F → F such that h ̸= p ◦ Lz,x, either

∣∣∣∣ Pr
S→(u,i)

[E(h(L−1z,x(u)), i) = 1|u ∈ Lz,x]−
1

2m

∣∣∣∣ ≤
ϵ

6 · 2m
or h(0) ̸= p(z).

Once this lemma has been proved, a gap probability maximization solver immediately gets us
the result. Let S be some distribution of density δ biasing EXT (x, i) = E(p(x), i). Our algorithm
for evaluating p(x) operates as follows:

Algorithm 1 GPM evaluator for p(x)

We will define C ′(h) as follows:

If h(0) ̸= p(z), output 0.
Sample S → (u, i).
Say the test passes if u lies on the line and E(h(L−1z,x(u)), i) = 1:
Output 1 if and only if the test passes O(1/ϵ) times.

▷ The key lemma tells us that we can run gap probability maximization on C ′ to compute
p ◦ Lz,x.
Output (p ◦ Lz,x)(1) = p(x).

We remark that the proof of this key lemma is highly non-trivial. Full details are included in
Section 5.1. Roughly, the first half of this lemma comes from a double application of Chebyshev’s
inequality. The second half of the lemma comes from proving a list decoding property, which implies
that the number of univariate polynomials which bias E(h(L(u)), i) on a random line L is small.
We give a more thorough intuition for the proof of the second half of this lemma in Section 5.3.

To lift this result, all we need to do is show that gap probability maximization can be solved
for quantum circuits using postselecting quantum circuits. We show this in Section 4.2.

2.4 Improvement to postselecting samplers

We remark that it is easy to extend our result to postselecting samplers. We simply replace the
line ”sample S → (u, i)” with ”sample S → (u, i, b) and fail if b = 0”. The idea here is that
nondeterminism allows us to condition our distribution for free, and so it costs nothing to add in
the additional condition stemming from using a postselecting sampler.

2.5 Multi-bit output

To extend our result to multi-bit output, we use the same argument as Trevisan and Vadhan.
In particular, it is not hard to extend from 1-bit output to logarithmic length output, and our
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formal proof will go straight to logarithmic output. Once we have a deterministic extractor with
logarithmic length output, we can use this extractor to create a logarithmic length seed for a seeded
extractor (defined formally in Section 3.5). That is, our final multi-bit extractor will be as follows

Ext(a, (x, i)) = Ext1(a,E(p(x), i))

where Ext1 is a seeded extractor with appropriate parameters.

2.6 Leakage Resilience

Finally, we consider a notion of leakage-resilient extractors against samplable sources. Informally,
leakage resilience requires that the output of the extractor remain close to uniform even when some
side information about the underlying source is revealed. Note that arbitrary leakage resilience is
impossible, as the leakage could be the output of the extractor itself. However, as our goal is to
model physical extractors, it is natural to consider leakage which is itself samplable.

It is natural to consider leakage any samplable function of the randomness source. However,
we choose to consider a stronger notion, where the leakage is provided by the sampling circuit
itself. This way, the leakage can depend on the randomness used to generate the source (includ-
ing in the quantum setting). Note that providing resilience against arbitrary length leakage, even
in this restricted model, is impossible as the leakage may simply be the underlying randomness
used to generate the source. Thus, we additionally require that the source have high min-entropy
conditioned on its leakage.

We show that given a deterministic extractor against nondeterministic samplable sources, either
classical or quantum, then we get a leakage-resilient deterministic extractor for free. To show this,
we rely on the fact that our extractor works against the source defined by conditioning the original
source on the leakage being any particular value.

Theorem 4. Let Ext be a (k, ϵ)-deterministic extractor against nondeterministic sources sam-
plable by size-s (quantum) circuits. Then, for all c > 0, Ext is a leakage-resilient (k + c, ϵ + 2−c)-
deterministic extractor against sources samplable by size-O(s) postselecting (quantum) circuits.

We remark that in our notion of leakage-resilience, we only consider classical leakage. In the
quantum setting, there is also a notion of min-entropy, which was defined originally in [20]. This
definition has been previously been used to capture randomness extraction [7,9,6] in the presence
of quantum side-information.

We do not make any claims about quantum leakage-resilience. If quantum computers do not ex-
ist, the power of quantum computing must come only from the real world. Therefore, any adversary
wishing to use quantum side information to distinguish the output of an extractor from randommust
first make some efficient measurement, which equivalently could be made by the source directly.
Nevertheless, constructing deterministic extractors against quantum samplable sources secure even
in the presence of quantum side information is an interesting open question.

3 Preliminaries

3.1 Notation

Throughout this paper, we often consider distributions S over product spaces A × B. For some
subset X ⊆ A, we define S|X to be S conditioned on the first output being in X. Formally, for all
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(a, b) ∈ A× B,
Pr

S|X→(a′,b′)
[(a′, b′) = (a, b)] = Pr

S→(a,b)
[(a′, b′) = (a, b)|a′ ∈ X]

3.2 Types of Nondeterministic Circuits

Let P be any complexity class and fix some P-complete problem πP . A P-circuit is a circuit with
access to oracle gates for πP . We will primarily be concerned with Σi circuits. We will refer to
Σ1-circuits primarily as NP-circuits. The class of circuits that has all its Σ1 gates in the same layer,
i.e. circuits making SAT queries non-adaptively, is referred to as NP||-circuits.

We rely on a collapse theorem for E due to Shaltiel and Umans [24] of which the following is a
special case:

Theorem 5 (Corollary of [24, Theorem 3.2]). If every language in E has NP||-circuits of size

s(n), then every language in E has non-deterministic circuits of size s(n)O(1).

A quantum circuit of size s is a sequence of unitaries U1, . . . , Us where each Ui is taken from some
universal gate set. A quantum circuit has an input register of length m, ℓ ≤ s ancilla qubits, and
an output register of length n. We use C(x) to refer to the distribution on the output register of
(Us . . . U1)(|x⟩ ⊗ |0⟩⊗ℓ ⊗ |0⟩⊗n) after measuring in the standard basis.

We will use the following formulation of postselecting quantum circuits. A postselecting quantum
circuit C has the same format as a quantum circuit, except it has an additional postselection register.
We use C(x) to refer to the distribution on the output register of (Us . . . U1)(|x⟩ ⊗ |0⟩⊗ℓ ⊗ |0⟩⊗n)
after measuring in the standard basis, conditioned on the measurement of the postselection register
being 1. Note that here the size of a postselecting quantum circuit is the size of the corresponding
quantum circuit.

Aaronson proved in [1] that this model is equivalent to the model of quantum circuits with
the ability to perform arbitrary postselections. Note that we must be somewhat careful here, as
it is necessary that postselecting quantum circuits not be allowed to intersperse measurement and
postselection.

Definition 1. The Σi-circuit complexity of a boolean function f is the size of the smallest Σi-
circuit C such that C(x) = f(x) for all x.

Definition 2. The postselecting quantum circuit complexity of a boolean function f is the size of
the smallest postselecting quantum circuit C such that for all x,

f(x) = 1⇒ Pr[C(x) = 1] ≥ 2

3

f(x) = 0⇒ Pr[C(x) = 1] ≤ 1

3

Definition 3. Let C be a circuit model of computation and let L be a language. We define fLn :
{0, 1}n → {0, 1} by fLn (x) = 1 ⇐⇒ x ∈ L. The C-complexity of L is the function s(n) := the
C-complexity of fLn .

11



3.3 Min-entropy and density

Definition 4. Let X,Y be random variables. We define the min-entropy of X conditioned on Y :

H∞(X|Y ) := − logEY→y[max
x

Pr[X = x|Y = y]]

The unconditional min-entropy of X is the min-entropy of X conditioned on a constant. That
is,

H∞(X) := − log(max
x

Pr[X = x])

Oftentimes, it is more convenient for us to reframe min-entropy from the framework of density.
Formally,

Definition 5. Let X be a random variable over some space X . We say X has density δ if

max
x

Pr[X = x] ≤ 1

δ |X |

Note that a random variable X over {0, 1}n has density δ if and only if the min-entropy of X

is ≥ n− log
1

δ
. Density also satisfies the following useful property.

Proposition 3. Let (X,Y ) be a random variable over some product space X × Y. If (X,Y ) has
density δ, then X and Y both have density δ.

To see this, observe that

Pr[X → x] =
∑
y

Pr[(X,Y )→ (x, y)] ≤ |Y | 1

δ|X||Y |
=

1

δ|X|

3.4 Classes of sources

A randomness source S is a distribution over some space X . A class of sources S is a set of
randomness sources. We define several relevant classes of sources.

Definition 6. We say that a distribution S is samplable by size-s circuits if there exists a circuit
C of size s such that

Pr
r
[C(r) = x] = Pr[S → x]

for all x.

Definition 7. We say that a distribution S is samplable by size-s quantum circuits if there exists
a quantum circuit C of size s such that

Pr[C → x] = Pr[S → x]

for all x.

Note that as quantum circuits can sample their own randomness, we no longer need to quantify
the probability that C outputs x by some randomness space.

We also define a notion of postselecting samplable sources. A source is samplable by postselecting
circuits if we allow the circuit to condition on one of its outputs being 1.
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Definition 8. Let S be a class of sources over X × {0, 1}. We define a new class of sources Snd

over X , which we call postselecting S. We say that S ′ ∈ Snd if there exists a source (S, b) ∈ S
such that for all x′,

Pr
S′→x

[x = x′] = Pr
S→(x,b)

[x = x′|b = 1].

Observe that when S is the class of sources samplable by size-s quantum circuits, we see that
Snd is the class of sources samplable by size-s postselecting quantum circuits.

3.5 Statistical Distance and Extractors

Definition 9. For two distributions X,Y , the statistical distance between X and Y is

SD(X,Y ) :=
1

2

∑
x

|Pr[X = x]− Pr[Y = x]|

We say that X and Y are ϵ-close if SD(X,Y ) ≤ ϵ.

Notation 1 We say that Un is the uniform distribution over {0, 1}n.

Definition 10. We say that a function Ext : {0, 1}n×{0, 1}t → {0, 1}m is a (k, ϵ) seeded extractor
if for every distribution S over {0, 1}n such that H∞(S) ≥ k, Ext(S, Ut) is ϵ-close to Um.

Definition 11. Let S be some class of sources. We say that a function EXT : {0, 1}n → {0, 1}m
is a (k, ϵ) (deterministic) extractor against S if for every distribution S ∈ S such that H∞(S) ≥ k,
EXT (S) is ϵ-close to Um.

Definition 12. Let S be some class of sources. We say that a function EXT : {0, 1}n → {0, 1}m
is a (k, ϵ) leakage-resilient extractor against S if for every distribution (S, L) ∈ S such that
H∞(S|L) ≥ k, EXT (S) is ϵ-close to Um.

Definition 13. We say that a function Ext : {0, 1}n×{0, 1}n → {0, 1}m is a (kX , kY , ϵ) two source
extractor if for every pair of distributions X,Y over {0, 1}n with H∞(X) ≥ kX and H∞(Y ) ≥ kY ,
Ext(X,Y ) is ϵ-close to Um.

3.6 Combinatorial list decoding

Definition 14. We say that a function E : {0, 1}n′×{0, 1}n′ → {0, 1}m satisfies (δ, t, ϵ)-combinatorial
list decoding if, for all a ∈ {0, 1}m, the following holds:

Let S be any distribution over {0, 1}n′
of density δ. Then,∣∣∣∣{w :

∣∣∣∣ PrS→i
[E(w, i) = a]− 1

2m

∣∣∣∣ ≥ ϵ}∣∣∣∣ ≤ t
Lemma 3 (Adapted from [3]). If E : {0, 1}n′ × {0, 1}n′ → {0, 1}m is a

(
kX , kY ,

ϵ

2m

)
-two

source extractor, then E satisfies (2n
′−kY , 2kX+1, ϵ) combinatorial-list decoding.
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Proof. Fix any S of density 2n
′−bY . Then S has min-entropy bY . Assume towards contradiction

that there exists some a such that∣∣∣∣{w :

∣∣∣∣ PrS→i
[E(w, i) = a]− 1

2m

∣∣∣∣ ≥ ϵ}∣∣∣∣ > 2bX+1

Without loss of generality, we can assume that∣∣∣∣{w : Pr
S→i

[E(w, i) = a] ≥ 1

2m
+ ϵ

}∣∣∣∣ ≥ 2bX

Define X to be the uniform distribution over such strings w. Hmin(X) ≥ kX . So

Pr
X→w,S→i

[E(w, i) = a] ≥ 1

2m
+ ϵ

which contradicts E being a
ϵ

2m
two source extractor.

Theorem 6. [10] There exists a
(
0.2n′, 0.9n′, 2−0.2n

′
)

two source extractor computable in time

poly(n′).

Corollary 3. For every m ≤ 0.1n′, there exists a function E : {0, 1}n′ → {0, 1}n′ → {0, 1}m
computable in time poly(n′) satisfying (2−0.1n

′
, 20.2n

′
, 2−0.1n

′
)-combinatorial list decoding.

4 The Gap Probability Maximization Problem

We repeat our definition of the gap maximization problem (GPM) from the technical overview:

Say we are given a boolean randomized algorithm C̃ and a constant γ with the following promise:
- There exists some x∗ such that Pr[C̃(x∗)→ 1] ≥ γ
- For all x ̸= x∗, Pr[C̃(x)→ 1] ≤ γ

2
The GPM problem asks us to find x∗.

In this section, we will show that the GPM problem can be efficiently solved for classical circuits
using NP||-circuits. Formally,

Theorem 1 Let γ, s > 0, and let C be the class of boolean valued circuits of size s with input space
X such that there exists an x∗ ∈ X satisfying
- Pr[C̃(x∗)→ 1] ≥ γ,
- For all x ̸= x∗, Pr[C̃(x)→ 1] ≤ γ

2
.

Then C(C̃) = x∗. There exists a poly(s)-size NP||-circuit C such that for all C̃ ∈ C, C(C̃) = x∗.

In fact, the size of C will be polynomial in γ and s. But since γ ≤ 1, we can thus upper bound
the size of C by a polynomial in s. Note that this means the problem is easier for small values of γ.
Intuitively, this is because the difficulty lies in reducing the number of witnesses for ”bad” x ̸= x∗.

Note that nondeterminism is indeed necessary to solve this problem, as such a C can be used to
solve SAT. In particular, if C̃ϕ(x; r) is a circuit evaluating ϕ on input x, then for all ϕ with exactly

one witness x∗, C1(C̃ϕ) = x∗.
We also show a quantum analogue of this theorem.
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Theorem 7. Let γ, s > 0, and let C be the class of boolean valued quantum circuits of size s with
input space X and ℓ ancilla qubits such that there exists an x∗ ∈ X satisfying
- Pr[C̃(x∗)→ 1] ≥ γ,
- For all x ̸= x∗, Pr[C̃(x)→ 1] ≤ γ

2
.

Then there exists a poly(s)-size PostBQP-circuit C such that for all C̃ ∈ C, Pr[C(C̃)→ x∗] ≥ 2

3
.

We also remark that it is not necessary that these algorithms be given γ, since they can try

every γ =
1

2i
for each 1 ≤ i ≤ s in time poly(s).

4.1 GPM solving for classical circuits

In this section, we prove Theorem 1 by relying on the following lemma.

Lemma 4. Let S = {a1, . . . , a|S|}. Choose h : {0, 1}s → [N ] at random from a family of pairwise
independent hash functions. Let Sh be the random variable defined by Sh := S ∩ {r : h(r) = 0}.

Then E[|Sh|] =
|Sh|
N

and V ar(|Sh|) ≤
|S|
N

.

Proof. Note that |Sh| =
∑

1h(ai)=0. We also have Eh[1
2
h(ai)=0] = Eh[1h(ai)=0] =

1

N
. The lemma

then follows by linearity of expectation and pairwise independence.

We now proceed to the proof of Theorem 1.

Proof. We will first define a randomized (non-adaptive) NP-circuit Test solving GPM for classical
circuits with some positive probability. That is, for all C̃ ∈ C, Test will satisfy

Pr[Test(C̃) = x∗] ≥ 1− 2−O(s log s)

As there are at most 2O(s log s) circuits of size s, by the union bound we have that there exists some
randomness r such that for all C̃ satisfying the property,

Test(C̃; r) = x∗

Thus, nonuniformly fixing r gives us the C we want for the theorem statement.
To help us frame the argument, we will instead think of C̃ as a circuit taking an input in X

and a witness in {0, 1}s. We say that r is a witness for x if C(x; r) = 1. The property of C that we
require is that there are at least 2sγ witnesses for x, but for any x ̸= x∗ there are at most 2r−1γ
witnesses.

Test will use C̃ to define a new circuit C̃ ′ such that with high probability x∗ has at least one
witness under C̃ ′, but any x ̸= x∗ has NO witnesses. Test will then operate by nondeterministically
finding a (x̃, r̃) such that C̃ ′(x̃; r̃) = 1, and outputting x̃.

Given a sequence of hash functions h1, . . . , hk and a circuit C, C̃ ′(x) will first sample t distinct
preimages of 0 for each hi: ri,1, . . . , ri,t. C̃

′ will then set testxi to be true if C̃(x; ri,j) = 1 for all j.

If the number of testxi ’s satisfied is beyond the threshold t′, C̃ ′(x) will output 1.
To argue why this works, let us first think of the case where k = 1. There will exist some

randomness such that testi is true if and only if t witnesses for x under C̃ fall into the subspace
defined by h−11 (0). For an appropriately chosen output length of h, with constant probability there
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will be some randomness such that testi is satisfied for x∗. For any x ̸= x∗, the probability that
testi is satisfied for x will be less than some smaller constant, and thus these two events will be
distinguishable.

Amplification of this process inside C̃ ′ will then guarantee that with high probability there is a
witness for x∗ but no witness for x under C̃ ′. Finally, because x∗ is unique, we can find each bit of
it with parallel calls to a SAT oracle.

We formally define Test(C̃) in Algorithm 4.1. Here, N , k, t, and t′ are all variables to be set
later, and H ⊆ {h : {0, 1}s → [N ]} is a family of pairwise independent hash functions.

Algorithm 2 Test(C̃)

Sample h1, . . . , hk
$←− H.

Construct a circuit C̃ ′ as follows:

On input (x, {ri,j}[k]×[t]) with x ∈ X, ri,j ∈ {0, 1}s

If there exists i, j, j′ such that ri,j = ri,j′ , output 0.
If there exists i, j, such that hi(ri,j) ̸= 0, output 0.

Let testxi be 1 if and only if C̃(x; ri,j) = 1 for all j ∈ [t].

Output 1 if and only if
∑
i∈[k]

testi ≥ t′.

For i = 1, . . . , |x|, define C̃ ′i to the be the circuit: C̃ ′i(x, r) := C̃ ′(x, r) ∧ (xi = 1)
For i = 1, . . . , |x|, set x̂i = 1 if and only if C̃ ′i is satisfiable (via parrallel SAT calls).
Output x̂.

Let A be the event that there exists a witness for x∗ under C̃ ′. Let B be the event that there
does not exist a witness for any x ̸= x∗. As long as A and B both hold, Test(C̃) will succeed.

Formally, call {ri,j} valid if the first two tests in C̃ ′ pass for ri,j . That is, for each i, ri,1, . . . , ri,t
are distinct, and h(ri,j) = 0 for all i, j.

We define Ri,x to be an indicator that there exists a witness r such that testxi is 1. Then, we

can view A as the event that
∑
i

Ri,x∗ ≥ t′ and B as the event that
∑
i

Ri,x < t′ for all x ̸= x∗.

Define Sx := {r|C(x; r)→ 1}. It is clear that Ehi
[Ri,x] = Pr

hi

[|Sx
h | ≥ t].

We will begin by bounding E[Ri,x∗ ]. Let S′ ⊆ Sx∗
be some subset of size γ2s. We know that

|Sx∗ | ≥ γ2s. Using the key lemma and applying Chebyshev’s inequality gives us

Ehi
[Ri,x∗ ] = Pr

hi

[|Sx∗
h | ≥ t]

≥ Pr
hi

[|S′h| ≥ t]

≥ 1− Pr
hi

[∣∣∣∣ |S′|N − |S′h|
∣∣∣∣ > |S′|N − t

]
≥ 1− γ2s

N

1(
γ2s

N − t
)2
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Similarly, for x ̸= x∗, we have |Sx| ≤ γ2s−1, and so we can use similar techniques to get

Ehi
[Ri,x] = Pr

hi

[|Sx
h | ≥ t]

≤ Pr[|Sx
h | −

|Sx|
N
≥ t− |S

x

N
]

≤ 2s

2N

1(
t− γ2s

2N

)2
Setting t = 48, N =

γ2s

64
gives us

Ehi
[Ri,x∗ ] ≥ 3

4

Ehi
[Ri,x ̸=x∗ ] ≤ 1

8

Thus, if we set t′ =
k

2
, we should have Pr[

∑
i∈[k]

Ri,x∗ ] is large and for x ̸= x∗, Pr[
∑
i∈[k]

Ri,x] is

small.

Thus, the Chernoff bound gives us that

Pr
h1,...,hk

[A] = Pr
h1,...,hk

[
∑
i∈[k]

Ri,x∗ < t′]

≤ Pr
h1,...,hk

[
∑
i∈[k]

Ri,x∗ ≤
(
1− 1

3

)
3

4
k] ≤ e−

k
24

and (by using the union bound)

Pr
h1,...,hk

[B] = Pr[∃ x ̸= x∗ :
∑
i∈[k]

Ri,x ≥
k

2
]

≤
∑
x ̸=x∗

Pr[
∑
i∈[k]

Ri,x ≥ (1 + 3)
k

8
]

≤ 2s · e−
9k
40

Together, this means

Pr[A and B] ≥ 1− e−
k
24 − 2se−

9k
40

and so for k = O(s log(s)), we get that Test succeeds with all but 2−O(s log s) probability.

Note that the size of Test is poly(s, k, t, t′, logN). But k = O(s log(s)), t = 48 = O(1), t′ =

k/2 = O(s), and logN = log
γ2s

64
= O(s), and so Test runs in time poly(s).

4.2 GPM solving for quantum circuits

In this section we prove Theorem 7
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Proof. Using the principle of deferred measurement, we will assume that C̃(x) produces a pure
state |ϕx⟩ and outputs a measurement of the first register of |ϕx⟩ under the standard basis. We will
write |ϕx⟩ = αx |0⟩ |ϕ0x⟩+ βx |1⟩ |ϕ1x⟩.

We define C(C̃) as follows. First, run C̃ on
1√
|X|

∑
x∈X
|x⟩ to generate

|ψ1⟩ ∝
∑
x∈X
|ϕx⟩ |x⟩ .

Then, postselect on the first register of |ψ1⟩ being 1 to get

|ψ2⟩ ∝
∑
x∈X

βx |ϕ1x⟩ |x⟩

Repeating this process k times gives the state

|ψ2⟩⊗k ∝
∑

x1,...,xk

βx1 · · ·βxk
|ϕ1x1
⟩ · · · |ϕ1xk

⟩ |x1⟩ · · · |xk⟩

Postselecting on the predicate x1 = x2 = · · · = xk gives us

|ψ3⟩ ∝
∑
x

βkx |ϕ1x⟩
⊗k |x⟩⊗k

C(C̃) will produce |ψ3⟩, and output the result of a measurement on the last register in the
standard basis.

Then,

Pr[C(C̃)→ x∗] =
β2kx∗

β2kx∗ +
∑
x ̸=x∗

β2kx

≥ γk

γk + (|X| − 1)γ
k

2k

If we set k ≥ 2 log |X|, then

Pr[C(C̃)→ x∗] >
γk

3
2γ

k
=

2

3

Note that C(C̃) just simulates C̃, log |X| times. Since log |X| ≤ size(C̃), this means that C is
of size poly(size(C̃)).

4.3 On GPM for postselecting quantum circuits

One may wish to extend this result to get a GPM solver for postselecting quantum circuits. The
naive approach to this would be to define |ϕx⟩ to be the state produced by C̃(x) after postselection
but before measurement. However, this approach will not work. The subtlety here is that there is
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no obvious way to produce a superposition over these states, as postselecting on C̃

(∑
x∈X
|x⟩

)
will

not give the desired result.
The counterexample for this is the following circuit C̃(x) defined as follows:

First, it produces the state
|ϕ⟩ =

√
1− ϵ |0⟩ |x⟩+

√
ϵ |1⟩ |1⟩

Then, it postselects on the second register measuring to 1, and outputs the result of a measurement
on the first register.

Let |ϕx⟩ be the state resultant from C̃(x) before postslection and let |ϕ′x⟩ be the state resultant
after postselection. We have

|ϕ0⟩ =
√
1− ϵ |0⟩ |0⟩+

√
ϵ |1⟩ |1⟩ ; |ϕ′0⟩ = |1⟩

and
|ϕ1⟩ =

√
1− ϵ |0⟩ |1⟩+

√
ϵ |1⟩ |1⟩ ; |ϕ′1⟩ =

√
1− ϵ |0⟩+

√
ϵ |1⟩

It is clear that the probability that C̃ accepts 0 is more than twice the probability it accepts 1, and
so our GPM algorithm should 0 on input C̃. However, let us consider what happens when we try
to produce |ϕ0⟩+ |ϕ1⟩ by postselecting on C̃ applied to the uniform superposition. We start with

(
√
1− ϵ |00⟩+

√
ϵ |11⟩) |0⟩+ (

√
1− ϵ |01⟩+

√
ϵ |11⟩) |1⟩

and so postselecting on the second register being 1 leaves us with the residual state proportional to

√
ϵ |11⟩ |0⟩+

√
1− ϵ |01⟩ |1⟩+

√
ϵ |11⟩ |1⟩

But this is very different from |ϕ′0⟩+ |ϕ′1⟩. In particular, measuring the first register will produce 1
with very high probability. Thus, continuing to run our GPM procedure using this state will output
1.

This argument shows that a naive extension of the GPM protocol described in the previous
section will not be able to solve GPM for postselecting circuits. However, this does not mean
that no postselecting algorithm can solve GPM for postselecting circuits. Although our techniques
bypass this, we leave this challenge as an open question.

5 Extractors from hardness assumptions

In this section, we focus on proving the following theorem.

Theorem 8. Let p : Ft → F be any polynomial of degree d with |F| = q = 2n
′
. Let E : F×{0, 1}n′ →

{0, 1}m satisfy (2−0.2n
′
, 2−0.1n

′
, 20.2n

′
)-combinatorial list decoding.

For any ϵ, δ satisfying

d

q
≤ ϵ2δ2

64 · 20.4n′+2m

ϵδ ≥ 128 · 2m−0.1n′

the following holds:
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If there exists a size-s postselecting (quantum/classical) samplable source S of density δ with
output space Ft × {0, 1}n′

such that∣∣∣∣ Pr
S→(x,i)

[E(p(x), i) = b]− 1

2m

∣∣∣∣ ≥ ϵ

2m

then there exists a (postselecting/NP||)-circuit C of size poly

(
s, 2m,

1

ϵ

)
computing p everywhere.

First we instantiate Theorem 8 with the E from Corollary 3. Theorems 2 and 3 then follow by
applying a similar argument to the one used by [26] in proving Theorem 5.8 from Theorem 5.3. The
full proofs of these theorems are deferred to Appendix C. Theorem 5 then gives us Corollary 1.

To prove Theorem 8, we will rely on the following (restated) key lemma as well as the existence
of an efficient implementation of a circuit solving the gap probability maximization problem:

Lemma 5. KEY LEMMA:
Let F = GF (2n

′
) be a field of size q = 2n

′
. Let p : Ft → F be any degree d polynomial, let

E : F × {0, 1}n′ → {0, 1}m satisfy (2−4m, 2−0.1n
′
, 20.2n

′
)-combinatorial list decoding, and let S be

any distribution of density δ such that∣∣∣∣ Pr
S→(u,i)

[E(p(u), i) = 1]− 1

2m

∣∣∣∣ ≥ ϵ

2m
.

For any ϵ, δ satisfying

d

q
≤ ϵ2δ2

64 · 20.4n′+2m

ϵδ ≥ 128 · 2m−0.1n′

the following holds: There exists a z such that for
15

16
values of x,

-

∣∣∣∣ Pr
S→(u,i)

[E(p(u), i) = 1|u ∈ Lz,x]−
1

2m

∣∣∣∣ ≥ ϵ

3 · 2m

- For all h : F → F such that h ̸= p ◦ Lz,x, either

∣∣∣∣ Pr
S→(u,i)

[E(h(L−1z,x(u)), i) = 1|u ∈ Lz,x]−
1

2m

∣∣∣∣ ≤
ϵ

6 · 2m
or h(0) ̸= p(z).

The proof of this lemma will be presented in Section 5.1. We now prove Theorem 8 from
Lemma 5.

Proof. Towards contradiction, we will assume that there is some samplable distribution S which
biases E(p(x), i) for some output. Without loss of generality, assume that∣∣∣∣ Pr

S→(x,i)
[E(p(x), i) = 1]− 1

2m

∣∣∣∣ ≥ ϵ

2m
.
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Algorithm 3 C̃x(h)

If h(0) ̸= p(z), output 0.

Sample (u1, i1, b1), . . . , (uk, ik, bk)
$←− SAMP .

Output 1 if and only if for all j:
- bj = 1
- uj ∈ Lz,x(F) or
- E(h(L−1z,x(uj)), ij) ̸= 1.

If Pr
S→(x,i)

[E(p(x), i) = 1] ≤ 1

2m
− ϵ

2m
, we define C̃x(h) as follows:

Let PASS be the event that all but the last test succeeds for all j. If PASS occurs, then (uj , ij)
is distributed according to S conditioned on the event that the first output is on the line. Thus, for
any h such that h(0) = p(z),

Pr[C̃x(h)→ 1] = Pr[PASS] Pr
S→(u,i)

[E(p(u), i) ̸= 1|u ∈ Lz,x(F)]k

If we nonuniformly fix z to be the same as from the key lemma, we then have that

Pr[C̃x(p ◦ Lz,x)→ 1] ≥ Pr[PASS]

(
1− 1

2m
+

ϵ

3 · 2m

)k

and

Pr[C̃x(h
′)→ 1] ≤ Pr[PASS]

(
1− 1

2m
+

ϵ

6 · 2m

)k

for all h′ ̸= p ◦ Lz,x. Then, for k = O

(
2m

ϵ

)
, we can say that

(
1− 1

2m
+

ϵ

3 · 2m

)k

≥ 2

(
1− 1

2m
+

ϵ

6 · 2m

)k

So nonuniformly fixing γ = Pr[PASS]

(
1− 1

2m
+

ϵ

3 · 2m

)k

in Theorem 1 (or Theorem 7 for the

quantum case) gives us a (NP||/postselecting quantum)-circuit computing p on 15/16 of its inputs.
Polynomial reconstruction then gives a (NP||/postselecting quantum)-circuit computing p every-
where.

If Pr
S→(x,i)

[E(p(x), i) = 1] ≥ 1

2m
+

ϵ

2m
, we define C̃x(h) as follows:

If we nonuniformly fix z to be the same as from the key lemma, we then have that

Pr[C̃x(p ◦ Lz,x)→ 1] ≥ Pr[PASS]

(
1

2m
+

ϵ

3 · 2m

)k

and

Pr[C̃x(h
′)→ 1] ≤ Pr[PASS]

(
1

2m
+

ϵ

6 · 2m

)k

21



Algorithm 4 C̃x(h)

If h(0) ̸= p(z), output 0.

Sample (u1, i1, b1), . . . , (uk, ik, bk)
$←− SAMP .

Output 1 if and only if for all j:
- bj = 1
- uj ∈ Lz,x(F) or
- E(h(L−1z,x(uj)), ij) = 1.

for all h′ ̸= p ◦ Lz,x. Then, for some k = O

(
2m

ϵ

)
, we can say that

(
1

2m
+

ϵ

3 · 2m

)k

≥ 2

(
1

2m
+

ϵ

6 · 2m

)k

So nonuniformly fixing γ = Pr[PASS]

(
1

2m
+
ϵ

3

)k

in Theorem 1 (or Theorem 7 for the quantum

case) gives us the result for the same reason as in the previous case.

Observe that C̃x and thus also the reconstruction algorithm is of size poly

(
s, 2m,

1

ϵ

)
, and so

we are done. Note that in order to run the GPM solver, we need C to be a NP||-circuit or a
PostBQP-circuit, depending on whether we are operating in the classical or quantum world.

5.1 Proof of Key Lemma

We will prove our key lemma by relying on two sublemmas. The proofs of these lemmas will be
delegated to sections 5.2 and 5.3 respectively. The proofs of these claims are adapted from the
proofs of Claims 37 and 38 in the full version of [25], although the proof of Lemma 7 is significantly
more involved. We give a full intuition for the proof of Lemma 7 at the beginning of its relevant
subsection.

Lemma 6. Let σ =
1

δ2q
+

22m

ϵ2δ2q
+

1

qt
. Choose a, b ∈ Ft uniformly at random. We define L : F→ Ft

to be the line between a and b. Formally, L(t) := at + b(1 − t). Then, with probability 1 − σ over
the choice of a, b, a ̸= b,

Pr
S→(x,i)

[x ∈ L(F)] ∈
(
1

2

q

qt
,
3

2

q

qt

)
and

| Pr
S→(x,i)

[E(p(x), i) = 1|x ∈ L(F)]− 1

2m
|≥ ϵ

3 · 2m

Lemma 7. Let L be a non-trivial line such that

Pr
S→(x,i)

[x ∈ L(F)] ≥ 1

2

q

qt
.

Define S = S|L. We call a polynomial h : F→ F ”bad” if∣∣∣∣∣ Pr
S→(x,i)

[E(h(L−1(x)), i) = 1]− 1

2m

∣∣∣∣∣ ≥ ϵ

6 · 2m
.
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If √
d

q
≤ 5

48

ϵδ

20.2n′+m

ϵδ ≥ 128 · 2m−0.1n′

then

|{h : h is ”bad”}| ≤ 16 · 20.4n′+m

ϵ

To prove our key lemma, we first consider the experiment where the two points z, x are chosen
uniformly at random from Ft, and we consider the line Lz,x between them. The probability over the
choice of z, x that Lemma 6 fails to hold is ≤ σ, and as long as Lemma 6 holds, so will Lemma 7.
To evaluate the probability of both conditions of the key theorem holding, we define E to be the
event over uniform random variables z and x that∣∣∣∣ bias of S|L on E(p(L−1(x)), i)− 1

2m

∣∣∣∣ < ϵ

3 · 2m

or ∃h ̸= p ◦ Lz,x s.t. h(0) = p(z) and

∣∣∣∣ bias of S|L on E(h(L−1(x)), i)− 1

2m

∣∣∣∣ < ϵ

3 · 2m

We upper bound the probability of event E.

Pr
z,x

[E] ≤ Pr
z,x

[
E ∪ |bad h | > 16 · 20.4n′+m

ϵ

]

from the union bound.

Pr
z,x

[E] ≤ Pr
z,x

[
E ∪ |bad h | > 16 · 20.4n′+m

ϵ

]

≤ Pr
z,x

[∣∣∣∣ bias of S|L on E(p(L−1(x)), i)− 1

2m

∣∣∣∣ > ϵ

6 · 2m
∪ |bad h | > 16 · 20.4n′+m

ϵ

]

+ Pr
z←L

[
|bad h | ≤ 16 · 20.4n′+m

ϵ
∩ ∃bad h s.t. h(0) = p(z)

]

≤ σ +
16 · 20.4n′+m

ϵ

d

q

Thus,

1− Pr
z,x

[E] ≥ 1− σ − 16 · 20.4n′+m

ϵ

d

q
.

Therefore, as long as

σ +
16 · 20.4n′+m

ϵ

d

q
≤ 1

32
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and the conditions from Lemma 7 hold, an averaging argument gives us that there exists some z
such that for 15/16 values of x, the properties we care about in the lemma statement hold. But

note that
d

q
≤ ϵ2δ2

64 · 20.4n′+2m
implies that

σ +
16 · 20.4n′+m

ϵ

d

q
≤ 1

32

and so we are done.

5.2 Proof of Lemma 6

Proof. Observe that the error is of the form
1± ϵ
2m

.

First, let’s assume that Pr
S→(x,i)

[E(p(x), i) = 1] ≤ 1− ϵ
2m

Let A be the event that

Pr
S→(x,i)

[x ∈ L(F)] ∈
(
1

2

q

qt
,
3

2

q

qt

)
and let B be the event that

Pr
S→(x,i)

[E(p(x), i) = 1|x ∈ L(F)] ≤ 1

2m
− ϵ

3 · 2m
.

Note that A and B are defined as events over the random choice of a, b ∈ Ft defining L. To show
that A and B hold with high probability, we define a new event B′ such that A and B′ together
imply B. Thus,

Pr[A and B] ≥ Pr[A and B′] ≥ 1− Pr[A]− Pr[B′].

Therefore, it will only remain to bound Pr[A] and Pr[B′]. To set up, we will define a few variables:
- px := Pr[S → (x, ·)] will be the probability that S outputs x as its first output.
- pL := Pr

S→(x,i)
[x ∈ L(F)] will be the probability that S outputs a point on L. Note that A is the

event that pL ∈
(
1

2

q

qt
,
3

2

q

qt

)
.

- wx := Pr
S→(x′,i′)

[E(p(x′), i′) = 1|x′ = x] will be the bias of E(p(x′), i′) conditioned on x. This can

be thought of as the ”weight” of x on the bias of our extractor.

- w̃x :=
1

2m
− wx will be the weight of x shifted by

1

2m
.

Note that we can write the event A and B in terms of these variables. In particular, A is the event

that pL ∈
(
1

2

q

qt
,
3

2

q

qt

)
. We also have

Pr
S→(x,i)

[E(p(x), i) = 1|x ∈ L(F)] =
∑

x∈L(F)

Pr
S→(x′,i′)

[E(p(x′), i′)|x′ = x] Pr
S→(x′,i′)

[x′ = x|x′ ∈ L]

=
∑

x∈L(F)

wx
Pr[S → x]

PrS→(x′,i′)[x′ ∈ L]

=
1

2m
− 1

pL

∑
x∈L(F)

w̃xpx
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Observe that if pL ≤
3

2

q

qt
and

∑
x∈Ft

w̃xpx ≥
ϵ

2

q

qt
, then

Pr
S→(x,i)

[E(p(x), i) = 1|x ∈ L(F)] ≤ 1

2m
− ϵ

3
≤ 1

2m
− ϵ

3 · 2m

. and so B holds. Thus, we define B′ to be the event that L is non-trivial and

∑
a∈F

w̃L(a)pL(a) ≥
ϵ

2

q

qt

It is clear that A and B′ together imply B. We now proceed to bounding the probabilities of A and
B′. Both of these arguments will boil down to a simple application of Chebyshev’s inequality.
A) Since L is chosen by selecting two points a, b ∈ Ft uniformly at random and setting L(0) = a,
L(1) = b, we have that L(0) and L(1) are independent, uniformly random variables over Ft. But
we note that for any pair of indices i, j, it would be equivalent to choose L by setting L(i) = a
and L(j) = b. Thus, {L(a)}a∈F is a collection of pairwise independent uniform random variables.
Define Ra := pL(a). {Ra}a∈F is a set of pairwise independent random variables. Note that EL[Ra] =

E
x

$←−Ft
[px]. But

∑
x∈Ft

px = 1, and so EL[Ra] =
1

qt
. Also, Ra ∈

[
0,

1

δqt

]
by the density requirement

on S. Thus, we get V ar(Ra) ≤
1

4δ2q2t
by Popoviciu’s inequality on variances. Observe that pL =∑

a∈F
Ra. Thus, E[pL] =

q

qt
and V ar(pL) ≤

q

4δ2q2t
by pairwise independence. Chebyshev gives us

Pr[A] = Pr

[∣∣∣∣pL − q

qt

∣∣∣∣ ≥ 1

2

q

qt

]
≤ V ar(R) · 4q

2t

q
=

1

δ2q

B’) We will use the same approach as for A, but with a different random variable. Define R̃a :=
w̃L(a)pL(a). Note that

∑
x∈Ft

w̃xpx =
1

2m
−

(∑
x∈Ft

Pr
S→(x′,i′)

[E(p(x′), i′) = 1|x′ = x] Pr[S → x]

)

=
1

2m
− Pr
S→(x,i)

[E(p(x), i) = 1]

=
ϵ

2m

Thus, EL[R̃a] = E
x

$←−Ft
[w̃xpx] =

ϵ

qt2m
. Also, R̃a ∈

(
−1

2

1

δqt
,
1

2

1

δqt

)
and so

V ar(R̃a) ≤
1

4δ2q2t
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Define R̃ =
∑
a∈F

R̃a. Note that as long as the line is non-trivial, R̃ =
∑

x∈L(F)

w̃xpx. By linearity of

expectation and linearity of variance for pairwise independent random variables, we have

E[R̃] =
qϵ

qt2m

V ar(R̃) ≤ 1

δ2q2t

Pr[B′] ≤ Pr

[
L is trivial or

∣∣∣∣R̃− qϵ

qt2m

∣∣∣∣ ≥ 1

2

qϵ

qt2m

]
≤ 1

qt
+

22m

ϵ2δ2q

And so setting σ =
1

qt
+

1

δ2q
+

22m

ϵ2δ2q
gives us our claim.

Now, let’s assume that Pr
S→(x,i)

[E(p(x), i) = 1] ≥ 1 + ϵ

2m

Let A be the event that

Pr
S→(x,i)

[x ∈ L(F)] ∈
(
1

2

q

qt
,
3

2

q

qt

)
and let B be the event that

Pr
S→(x,i)

[E(p(x), i) = 1|x ∈ L(F)] ≥ 1

2m
+

ϵ

3 · 2m
.

Note that A and B are defined as events over the random choice of a, b ∈ Ft defining L. To show
that A and B hold with high probability, we define a new event B′ such that A and B′ together
imply B. Thus,

Pr[A and B] ≥ Pr[A and B′] ≥ 1− Pr[A]− Pr[B′].

Therefore, it will only remain to bound Pr[A] and Pr[B′]. To set up, we will define a few variables:
- px := Pr[S → (x, ·)] will be the probability that S outputs x as its first output.
- pL := Pr

S→(x,i)
[x ∈ L(F)] will be the probability that S outputs a point on L. Note that A is the

event that pL ∈
(
1

2

q

qt
,
3

2

q

qt

)
.

- wx := Pr
S→(x′,i′)

[E(p(x′), i′) = 1|x′ = x] will be the bias of E(p(x′), i′) conditioned on x. This can

be thought of as the ”weight” of x on the bias of our extractor.

- w̃x := wx −
1

2m
will be the weight of x shifted by

1

2m
.

Note that we can write the event A and B in terms of these variables. In particular, A is the event

that pL ∈
(
1

2

q

qt
,
3

2

q

qt

)
. We also have

Pr
S→(x,i)

[E(p(x), i) = 1|x ∈ L(F)] =
∑

x∈L(F)

Pr
S→(x′,i′)

[E(p(x′), i′)|x′ = x] Pr
S→(x′,i′)

[x′ = x|x′ ∈ L]

=
∑

x∈L(F)

wx
Pr[S → x]

PrS→(x′,i′)[x′ ∈ L]

=
1

pL

∑
x∈L(F)

w̃xpx +
1

2m
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Observe that if pL ≤
3

2

q

qt
and

∑
x∈Ft

w̃xpx ≥
ϵ

2

q

qt
, then

Pr
S→(x,i)

[E(p(x), i) = 1|x ∈ L(F)] ≥ 1

2m
+
ϵ

3
≥ 1

2m
+

ϵ

3 · 2m

. and so B holds.
We can now proceed identically to the previous case.

5.3 Proof of Lemma 7

The proof of Lemma 4.1 in [26] relies on a weaker version of this lemma, which is originally stated
in [13]. We repeat that statement here as a proposition:

Proposition 4. Theorem 4.4 from [13].
Consider C a [N,D]q code. That is, C ⊆ [q]N and has a minimum distance between codewords of D.

Let R ∈ [q]N . Define γ := 1− D

N
. Let C1, . . . , Cm ∈ C such that for all j,

Pr
U→x

[(Cj)(x) = R(x)] ≥ ϵ.

Then if ϵ ≥
√

2γ, we have m ≤ 2/ϵ.

If R is a circuit estimating p on average, then setting C to be a Reed-Muller polynomial code
immediately gives a bound on the number of univariate degree d polynomials h which can agree
with R on any fixed line.

In order to prove this Lemma, we will use a similar approach. In particular, we will show that
if we have a set of h1, . . . , hm such that∣∣∣∣∣ Pr

S→(x,i)
[E(hi(L

−1(x)), i) = 1]− 1

2m

∣∣∣∣∣ ≥ ϵ

2m

then this will imply some statement we can plug into Theorem 4.

Note that the first issue we run into is that Theorem 4 requires indices to be drawn from the
uniform distribution. However, it turns out that this theorem easily lifts to the case where x is
sampled from an arbitrary high density distribution. In particular, we have

Proposition 5. Consider C a [N,D]q code. That is, C ⊆ [q]N and has a minimum distance between
codewords of D.

Let R ∈ [q]N , S be a distribution of density δ. Define γ := 1 − D

N
. Let C1, . . . , Cm ∈ C such that

for all j,

Pr
S→x

[(Cj)(x) = R(x)] ≥ ϵ.

Then if ϵ ≥
√

2γ

δ
, we have m ≤ 2/ϵ.
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We prove this modified proposition in Section A.
In order to begin our reasoning, we define

B(x) := {y : E(y,Sx) is biased}

We can argue that for each hi, we have

Pr
S→x

[(h ◦ L−1)(x) ∈ B(x)] ≥ ϵ′

for some ϵ′ depending on ϵ. Intuitively, this is because we know that E((h ◦ L−1)(x), i) is biased,
and so (h ◦ L−1)(x) should bias Sx with some reasonable probability over S → x.z

Furthermore, we know by the definition of combinatorial list-decoding that if Sx has high density,
then B(x) is small. Thus, if we had that Sx has high density for every x, then an averaging argument
would tell us that there is some subset hi1 , . . . , him/|B(x)| and some index i ∈ {1, 2, . . . , |B(x)|} such
that

Pr
S→x

[hij (x) = B(x)(i)] ≥
ϵ′

|B(x)|
Unfortunately, it is not the case that Sx has high density for every x. However, it turns out

that it is enough for us to show that Sx has high density with high probability over the choice of
S → x. This can be shown to be true via simple probability arguments.

That is, the outline of our proof of this claim goes as follows:
We define a set A of points on the line such that for all a ∈ A, Sa has high density and Pr

S→x
[x ∈ A]

is high.
We then follow the reasoning above to show that there is a large subset of h1, . . . , hm such that

each polynomial in the subset is biased to land in the the ith element of B(a) for all a ∈ A.
Finally, we apply Proposition 5 to the code of polynomials restricted to A.
Formal proof of Lemma 7:

For every non-trivial line L such that Pr
S→(x,i)

[x ∈ L(F)] ≥ 1

2

q

qt
, S has density δ :=

δ

2

To see this, consider any (x′, i′) ∈ L(F)× {0, 1}n′
.

Pr
S→(x,i)

[(x, i) = (x′, i′)|x ∈ L] =
PrS→(x,i)[(x, i) = (x′, i′)]

PrS→(x,i)[x ∈ L(F)]
≤

1
δqt2n′

q
2qt

=
1

δq2n′

We define the α-heavy-set Aα ⊆ L(F) of S as

Aα := {a ∈ L(F)|Pr[S → (a, ·)] ≥ α

δq
}

These are the points which have a particularly high probability of occurring.
We prove the following properties about Aα.

1. Pr
S→(x,i)

[x ∈ Aα] ≥ 1− γ, where γ :=
α

1− α
1− δ
δ

.

2. Let Sa = Sa := S|{a}. Then, Sa has density α.
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3. S|Aα = S|Aα has density δ(1− γ).
4. Define

Bβ(a) :=

{
b ∈ F :

∣∣∣∣ PrSa→i
[E(b, i) = 1]− 1

2m

∣∣∣∣ ≥ β} .
Then, if α ≥ 2−0.1n

′
, β ≥ 2−0.2n

′
, for all a ∈ Aα, |Bβ(a)| ≤ 20.2n

′
.

Proof of Property 1:

Proof. Observe that 1 ≤ |Aα| ·
1

δq
+ (q − |Aα|) ·

α

δq
, which implies that

1− α

δ
≤ |Aα| · (

1

δq
− α

δq
)

|Aα| ≥
1− α

δ
1
δq
− α

δq

≥
δ−α
δ

1−α
δq

≥ q δ − α
1− α

Now, we can bound the probability of x /∈ Aα by property 1, and its weight. Elements not in Aα

have weight at most
α

δq
. Thus,

Pr
S→(x,i)

[x /∈ Aα] ≤ (q − |Aα|) ·
α

δq

≤ (q − q δ − α
1− α

) · α
δq

= q(1− δ − α
1− α

) · α
δq

=
1− δ
1− α

· α
δ

Thus, Pr
S→(x,i)

[x ∈ Aα] ≥ 1− 1− δ
1− α

· α
δ
≥ 1− γ, where γ =

1− δ
1− α

· α
δ
.

Proof of Property 2:
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Proof. We know that Sa = S|{a}. Thus,

Pr[Sa → i′] = Pr[S → (x, i)|x = a]

=
PrS→(x,i)[x = a ∩ i = i′]

PrS→(x,i)[x = a]

=

1
δq|I|
α
δq

=
1

α |I|
Proof of Property 3:

Proof.

Pr
SAα→i

[i = i′] = Pr
S→(x,i)

[(x, i) = (x′, i′)|x ∈ A]

=
PrS→(x,i)[(x, i) = (x′, i′) ∩ x ∈ A]

Pr[x ∈ A]

≤
PrS→(x,i)[(x, i) = (x′, i′)]

Pr[x ∈ A]

≤
1

δq|I|

1− γ

≤ 1

δq |I| (1− γ)
≤ δ(1− γ)

Proof of Property 4:

Proof. Property 4 follows immediately from the definition of combinatorial list-decoding as well as
the fact that Sa has density α.

To prove Lemma 6, we introduce the following [r, r − d]q code where r = |Aα| ≥ q
δ − α
1− α

(from

property 1):
For a polynomial h : F→ F of degree d+ 1, let

Ch = h(L−1(a1)), h(L
−1(a2)), . . . h(L

−1(ar))

This code is in [q]r. Every codeword of this code is defined by a different polynomial h : F→ F of
degree d+1. Since 2 polynomials of degree d+1 can agree on at most d points, the distace between
any 2 codewords is atleast r − d.

First, we will prove this lemma for the case when there existm polynomials {f1, . . . , fm} : F→ F
such that,

∀j ∈ {1, . . . ,m}, Pr
S→(x,i)

[⟨fj(L−1(x)), i⟩ = 1] ≥ 1

2m
+

ϵ

6 · 2m
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Then, Pr
S→(x,i)

[⟨fj(L−1(x)), i⟩ = 1]

= Pr
S|A→(a,i)

[⟨fj(L−1(a)), i⟩ = 1] · PrS → x[x ∈ A] + Pr
S|Ac→(x,i)

[⟨fj(L−1(x)), i⟩ = 1] · Pr
S→x

[x /∈ A]

≤ Pr
S|A→(a,i)

[⟨fj(L−1(a)), i⟩ = 1] + Pr
S→x

[x /∈ A]

Rearranging the equations,

Pr
S|A→(a,i)

[⟨fj(L−1(a)), i⟩ = 1] ≥ Pr
S→(x,i)

[⟨fj(L−1(x)), i⟩ = 1]− Pr
S→x

[x /∈ A] ≥ 1

2m
+

ϵ

6 · 2m
− Pr

S→x
[x /∈ A]

Now, we will lower bound the Pr
S|A→(a,i)

[fj(L
−1(a)) ∈ Bα,β(a)].

We have,

Pr
S|A→(a,i)

[⟨fj(L−1(a)), i⟩ = 1] ≤ Pr
S|A→(a,i)

[fj(L
−1(a)) ∈ Bα,β(a)]

+ Pr
S|A→(a,i)

[⟨fj(L−1(a)), i⟩ = 1|fj(L−1(a)) /∈ Bα,β(a)]

≤ Pr
S|A→(a,i)

[fj(L
−1(a)) ∈ Bα,β(a)] +

1

2m
+ β,

where the last inequality follows from property 4.
Thus,

Pr
S|A→(a,i)

[fj(L
−1(a)) ∈ Bα,β(a)] ≥ Pr

S|A→(a,i)
[⟨fj(L−1(a)), i⟩ = 1]− 1

2m
− β

≥ 1

2m
+

ϵ

6 · 2m
− Pr

S→x
[x /∈ A]− 1

2m
− β

≥ ϵ

6 · 2m
− β − γ

=: ϵ∗,

where the last inequality follows from property 1.
Intuitively this implies that the probability that the set of functions {f1, . . . , fm} is in the set of
biased functions Bβ is at least ϵ∗.
Now, we define Bβ(a) = {b1(a), b2(a), . . . bs(a)}. Since ∀j ∈ {1, 2, . . . ,m}, Pr

S|A→(a,i)
[fj(L

−1(a)) ∈

Bβ(a)] ≥ ϵ∗, it implies that for each j, there must exist an index zj such that Pr
S|A→(a,i)

[fj(L
−1(a)) =

bzj (a)] ≥
ϵ∗

s
.

An averaging argument gives us that there must exist an index z such that at least m/s of the
functions in the set {f1, . . . , fm} (call this set {g1, g2, . . . , gm/s}) are such that

Pr
S|A

[gj(L
−1(a)) = bz(a)] ≥

ϵ∗

s
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If this is not true, since z comes from a set of size s then the total number of functions is < m
which is a contradiction.

From the definition of the code we defined, {bz(a)}a∈Aα ⊆ [q]s. To apply Proposition 6, we can

let Ra = bz(a). In our case, ϵ =
ϵ∗

s
and γ =

d

r
. We also know that δ = δ(1− γ) from property 3.

Therefore, if
ϵ∗

s
≥

√
2d√

δ(1− γ) · r
, then

m

s
≤ 2s

ϵ∗
, which implies that m ≤ 2s2

ϵ∗
.

Now, we will set the parameters α and β so that the condition
ϵ∗

s
≥

√
2d√

δ(1− γ) · r
is satisfiable

and such that property 4 holds.

Let α =
ϵδ

128 · 2m
, β =

ϵ

16 · 2m
. If

ϵδ

128 · 2m
≥ 2−0.1n

′
then property 4 holds. Recall that ϵ∗ =

ϵ

6 · 2m
− β − γ. Let ϵ

6 · 2m
= ϵ′.

Rearranging this, our requirement becomes:

ϵ′ = ϵ∗ + β + γ

≥ s
√
2d√

δ(1− γ) · r
+ β + γ

=
s
√
4d√

δ(1− γ) · r
+ β + γ

=
s
√
4d√

δ(1− 1−δ
1−α ·

α
δ
) · q δ−α1−α

+ β +
1− δ
1− α

· α
δ

=
s
√
4d√

δ(1− 2−δ
1−α ·

α
δ
) · q

δ
2
−α

1−α

+ β +
2− δ
1− α

· α
δ

= 20.2n
′

√
4d√

δ(1− 2−δ
1−α ·

α
δ
) · q

δ
2
−α

1−α

+ β +
2− δ
1− α

· α
δ

Observe that the following hold,
2− δ
1− α

· α
δ
≤ ϵ

16 · 2m

β ≤ ϵ

16 · 2m
and

δ
2 − α
1− α

≤ δ

2

Substituting these values, in our expression for ϵ′, we get the new requirement:

ϵ′ ≥ 20.2n
′

√
d

q

4

δ
+

ϵ

16 · 2m
+

ϵ

16 · 2m
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If √
d
√
q
≤ δ

8

ϵ
6·2m −

ϵ
16·2m −

ϵ
16·2m

20.2n′ =
5ϵδ

48 · 20.2n′+m
,

then our requirement is satisfied. Then, since ϵ∗ = ϵ′ − β − 1− δ
1− α

· α
δ
, we get:

ϵ∗ ≥ ϵ

6 · 2m
− ϵ

8 · 2m
− ϵ

8 · 2m
≥ 5ϵ

48 · 2m
≥ ϵ

8 · 2m

This implies that,

m ≤ 2s2

ϵ∗
≤ 16 · 20.4n′+m

ϵ
.

and so we are done.

For the other case, we now assume that there exist m polynomials {f1, . . . , fm} : F → F such
that,

∀j ∈ {1, . . . ,m}, Pr
S→(x,i)

[⟨fj(L−1(x)), i⟩ = 1] ≤ 1

2m
− ϵ

6 · 2m

This implies that ∀j ∈ {1, . . . ,m}, Pr
S→(x,i)

[
⟨fj(L−1(x)), i⟩ ≠ 1

]
≥ 1− 1

2m
+

ϵ

6 · 2m
.

Then, Pr
S→(x,i)

[⟨fj(L−1(x)), i⟩ ≠ 1]

= Pr
S|A→(a,i)

[⟨fj(L−1(a)), i⟩ ≠ 1] · PrS → x[x ∈ A] + Pr
S|Ac→(x,i)

[⟨fj(L−1(x)), i⟩ ≠ 1] · Pr
S→x

[x /∈ A]

≤ Pr
S|A→(a,i)

[⟨fj(L−1(a)), i⟩ ≠ 1] + Pr
S→x

[x /∈ A]

Rearranging the equations,

Pr
S|A→(a,i)

[⟨fj(L−1(a)), i⟩ ≠ 1] ≥ Pr
S→(x,i)

[⟨fj(L−1(x)), i⟩ ≠ 1]− Pr
S→x

[x /∈ A] ≥ 1− 1

2m
+

ϵ

6 · 2m
− Pr

S→x
[x /∈ A]

Now, we will lower bound Pr
S|A→(a,i)

[fj(L
−1(a)) ∈ Bα,β(a)].

We can re-write Pr
S|A→(a,i)

[⟨fj(L−1(a)), i⟩ ≠ 1] as

Pr
S|A→(a,i)

[⟨fj(L−1(a)), i⟩ ≠ 1|fj(L−1(a)) ∈ Bα,β(a)] · Pr
S|A→(a,i)

[fj(L
−1) ∈ Bα,β(a)]

+ Pr
S|A→(a,i)

[⟨fj(L−1(a)), i⟩ ≠ 1|fj(L−1(a)) /∈ Bα,β(a)] · Pr
S|A→(a,i)

[fj(L
−1(a)) /∈ Bα,β(a)]

Therefore,

Pr
S|A→(a,i)

[⟨fj(L−1(a)), i⟩ ≠ 1] ≤ Pr
S|A→(a,i)

[fj(L
−1(a)) ∈ Bα,β(a)]

+ Pr
S|A→(a,i)

[⟨fj(L−1(a)), i⟩ ≠ 1|fj(L−1(a)) /∈ Bα,β(a)]
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Observe that Pr
S|A→(a,i)

[⟨fj(L−1(a)), i⟩ ≠ 1|fj(L−1(a)) /∈ Bα,β(a)]

= 1− Pr
S|A→(a,i)

[⟨fj(L−1(a)), i⟩ = 1|fj(L−1(a)) /∈ Bα,β(a)]

≤ 1− (
1

2m
− β)

≤ 1− 1

2m
+ β

where the first inequality follows from property 4. Thus,

Pr
S|A→(a,i)

[fj(L
−1(a)) ∈ Bα,β(a)] ≥ Pr

S|A→(a,i)
[⟨fj(L−1(a)), i⟩ ≠ 1]− 1 +

1

2m
− β

≥ 1− 1

2m
+

ϵ

6 · 2m
− Pr

S→x
[x /∈ A]− 1 +

1

2m
− β

≥ ϵ

6 · 2m
− β − γ

= ϵ∗,

where the last inequality follows from property 1.
Intuitively this implies that the probability that the set of functions {f1, . . . , fm} is in the set of
biased functions Bα,β is at least ϵ∗.
Now, we define Bα,β(a) = {b1(a), b2(a), . . . bs(a)}. Since ∀j ∈ {1, 2, . . . ,m}, Pr

S|A→(a,i)
[fj(L

−1(a)) ∈

Bα,β(a)] ≥ ϵ∗, it implies that for each j, there must exist an index zj such that Pr
S|A→(a,i)

[fj(L
−1(a)) =

bzj (a)] ≥
ϵ∗

s
.

An averaging argument gives us that there must exist an index z such that at least m/s of the
functions in the set {f1, . . . , fm} (call this set {g1, g2, . . . , gm/s}) are such that

Pr
S|A

[gj(L
−1(a)) = bz(a)] ≥

ϵ∗

s

If this is not true, since z comes from a set of size s then the total number of functions is < m
which is a contradiction. From the definition of the code we defined, {bz(a)}a∈Aα ⊆ [q]s. To apply

Proposition 6, we can let Ra = bz(a). In our case, ϵ =
ϵ∗

s
and γ =

d

r
. We also know that δ = δ(1−γ)

from property 3.
The rest of the proof is identical to the previous case.

6 Leakage

Theorem 9. Let EXT be a (k, ϵ)-deterministic extractor against nondeterministic sources sam-
plable by size-s (quantum) circuits. Then, for all c > 0, EXT is a leakage-resilient (k+ c, ϵ+2−c)-
deterministic extractor against nondeterministic sources samplable by size-O(s) (quantum) circuits.

Lemma 8. Let X,L be any random variables such that H∞(X|L) ≥ k. Then, for any constant

c > 0, Pr
L→ℓ

[H∞(X|L = ℓ) ≥ k − c] ≥ 1− 1

2c
.
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Proof. We immediately have that

EL→ℓ[max
x

Pr[X = x|L = ℓ]] ≤ 2−k

Markov’s inequality then gives us that

Pr
L→ℓ

[max
x

Pr[X = x|L = ℓ] ≥ 2−k+c] ≤ 1

2c

which is exactly what we want.

Proof. Fix any source S → (X,L) of min-entropy k+c. For each possible leakage ℓ, we define a new
nondeterministic source X|ℓ defined by running S → (X,L), conditioning on L = ℓ, and outputting
X. Note that the size of this source is linear in s.

We call an ℓ bad if H∞(Xℓ) < k. The lemma tells us that Pr
L→ℓ

[ℓ is bad] ≤ 2−c.

We can then calculate ∆((EXT (X), L), (U,L)) as follows

∆((EXT (X,L), L), (U,L)) =
1

2

∑
x,ℓ

|Pr[EXT (X) = x and L = ℓ]− Pr[U = x and L = ℓ]|

=
1

2

∑
x,ℓ

|Pr[EXT (X) = x|L = ℓ] Pr[L = ℓ]− Pr[U = x] Pr[L = ℓ]|

≤ Pr[L ”bad”] +
1

2

∑
ℓ ”good”

(
Pr[L = ℓ]

∑
x

|Pr[EXT (Xℓ) = x]− Pr[U = x]|

)
≤ 2−c +

∑
ℓ ”good”

Pr[L = ℓ]∆((Ext(Xℓ), L), (U,L))

But since H∞(Xℓ) ≥ k for ℓ ”good”, we have that ∆((Ext(Xℓ), L), (U,L)) ≤ ϵ and so

∆((EXT (X,L), L), (U,L)) ≤ 2−c + ϵ
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A Modified list-decoding lemma

Proposition 6. Modified from [13].
Consider C a [N,D]q code. That is, C ⊆ [q]N and has a minimum distance between codewords of D.
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Let R ∈ [q]N , S be a distribution of density δ over [N ]. Define γ := 1 − D

N
. Let C1, . . . , Cm ∈ C

such that for all j,
Pr
S→x

[(Cj)(x) = R(x)] ≥ ϵ.

Then if ϵ ≥
√

2γ

δ
, we have m ≤ 2/ϵ.

Proof. Let χj(x) be an indicator for the event that (Cj)(x) = R(x). Inclusion-exclusion gives us
that, for any m′ ≤ m,

1 ≥ Pr
S→x

[∃ j ≤ m′ : χj(x)]

=
∑
j≤m′

Pr
S→x

[χj(x)]−
∑

j1 ̸=j2≤m′

Pr
S→x

[χj1(x) · χj2(x)]

≥
∑
j≤m′

Pr
S→x

[χj(x)]−
∑

j1 ̸=j2≤m′

Pr
S→x

[(Cj1)(x) = (Cj2)(x)]

≥ m′ϵ−
∑

j1 ̸=j2≤m′

Pr
S→x

[(Cj1)(x) = (Cj2)(x)]

And so, if we get a bound on Pr
S→x

[(Cj1)(x) = (Cj2)(x)], we can get an equation bounding m′.

But note that

Pr
S→x

[(Cj1)(x) = (Cj2)(x)] =
∑
x

Pr[S → x]1(Cj1
)(x)=(Cj2

)(x)

≤
∑
x

1

δN
1(Cj1

)(x)=(Cj2
)(x)

=
1

δ
Pr

U→x
[(Cj1)(x) = (Cj2)(x)]

≤ γ

δ

where the last inequality comes from the fact that Pr
U→x

[(Cj1)(x) = (Cj2)(x)] ≤
D −N
N

= γ.

This then gives us the equation

1 ≥ m′ϵ− m′(m′ − 1)

2
γ

Define β =
γ

2δ
and g(y) := βy2 − (ϵ+ β)y+1. The equation above tells us that g(y) ≥ 0 for all

m′ ≤ m.
Looking closely at the proof of Theorem 4.2 from [13], we see that they show the following

properties of the roots α1, α2 of g, conditioned on (β + ϵ)2 − 4β > β2:

1. α1, α2 are both non-negative reals
2. |α1 − α2| > 1

3. min(α1, α2) <
2

ϵ+ β

But note that as long as ϵ ≥
√

2γ

δ
, we have (β + ϵ)2 − 4β > β2. Thus, as for all m′ < m,

g(m′) > 0, we must have that m ≤ min(α1, α2) <
2

ϵ+ β
≤ 2

ϵ
.
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B Quantum probability estimation requires postselection

Let f be a boolean function decided by a postselecting circuit C. We observe that if we can solve
probability estimation for C when viewed as a quantum circuit, then we can evaluate f . This
means that to solve probability estimation generally, we require a model of computation stronger
than postselecting circuits. Formally,

Proposition 7. Let f : {0, 1}n → {0, 1} be a boolean function. Let C be a quantum circuit of size
s such that for all x

Pr
C(x)→(y,b)

[y = f(x)|b = 1] ≥ 2

3

Then, if there exists a quantum circuit C ′ of size poly(s) such that for some sufficiently small
constant ϵ, and for all x ∈ {0, 1}n, y ∈ {0, 1}, b ∈ {0, 1}

Pr
C′(x,y,b)→p̃

[p̃ ∈ (1± ϵ) Pr
C(x)→(y′,b′)

[(y′, b′) = (y, b)]] ≥ 2

3

then there exists a quantum circuit C ′′ of size poly(s) such that

Pr
C′′(x)→y

[C ′′(x) = f(x)] ≥ 2

3

Proof. First, we will amplify C ′ so that it succeeds with probability
99

100
. Define C ′′(x) as follows:

-Run C ′(x, 1, 1)→ p̃1 and C ′(x, 0, 1)→ p̃0
-If p̃0 ≥ p̃1, output 1. Otherwise, output 0.

Let γ = Pr
C(x)→(y,b)

[b = 1]. Note that Pr
C(x)→(y,b)

[y = f(x)|b = 1] ≥ 99

100
and so we have

Pr
C(x)→(y,b)

[y = f(x) and b = 1] ≥ 2

3
γ.

Similarly,

Pr
C(x)→(y,b)

[y = f(x) and b = 1] ≤ 1

3
γ.

Thus, with probability ≥
(

99

100

)2

, for sufficiently small ϵ we will have that p̃f(x) ≥ (1− ϵ)2
3
γ ≥ 1

2
γ

and p̃1−f(x) ≤ (1 + ϵ)
1

3
γ <

1

2
γ. Therefore, C ′′ evaluates f correctly with probability

(
99

100

)2

≥ 2

3
.

We also show how to achieve probability estimation using postselection. Formally,

Proposition 8. For all s, ϵ > 0, there exists a circuit C such that, if S is a random source
samplable by a size-s circuit C̃, then

Pr
C(C̃,x)→p̃

[p̃ ∈
(
1± 1

2

)
Pr[S → x]] ≥ 2

3
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Proof. Note that estimating the probability that C̃ outputs x is the same as estimating the proba-
bility that the circuit defined by running C̃ and checking if the output is x outputs 1. Thus, without
loss of generality we will assume that C̃ is boolean.

Let |ψ0⟩ = a |0⟩ |ϕ0⟩+ b |1⟩ |ϕ1⟩ be the state output by C̃ before measuring the output register.

For any constants c, d, we can produce the state

|ψ1⟩ ∝ c |0⟩ (X ⊗ I) |ψ1⟩+ d |1⟩ |ψ1⟩
= bc |00⟩ |ϕ1⟩+ ac |01⟩ |ϕ0⟩+ ad |10⟩ |ϕ0⟩+ bd |11⟩ |ϕ1⟩

Postselecting on the second qubit being 1 gives

|ψ2⟩ ∝ ac |01⟩ |ϕ0⟩+ bd |11⟩ |ϕ1⟩

Measuring the first qubit then outputs 1 with probability σ :=
b2d2

a2c2 + b2d2
. In particular, we

will consider the case where c2 = 1, d2 = 2i.

If Pr[C̃ → 1] = b2 ≥ 1

2i
, then

σ =
b2d2

a2c2 + b2d2
≥ 1

a2c2 + 1
≥ 1

2

If
1

2i+2
≤ b2 ≤ 1

2i+1
, then a2 ≥ 1− 1

2i+1
and so

a2c2 + b2d2 ≥ 1

4
+ 1− 1

2i+1
≥ 9

8
.

This then means that

σ ≤
1
2
9
8

≤ 4

9

If b2 ≤ 1

2i+2
, then

σ ≤ 1

4
≤ 4

9

Since there is a constant gap between
1

2
and

4

9
, this technique will allow us to detect using a

polynomial size postselecting circuit whether Pr[C̃ → 1] ≤ 1

2i
. Trying every i from 1 to s provides

an algorithm for probability estimation.

C Formal proofs of main theorems from Theorem 8

Theorem 10. If there is a problem in E = DTIME(2O(n)) with NP||-circuit complexity 2Ω(n),
there exists a constant δ > 0 such that for every constant c > 0, for every sufficiently large n and

for every m ≤ ω log n, there is a

(
(1− δ)n, 1

nc

)
deterministic extractor Ext : {0, 1}n → {0, 1}m

against sources samplable by size nc circuits. Furthermore, Ext is computable in time poly(nc).
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Proof. We know that there exists constants γ, γ′ such that for all ℓ, there is a function f : {0, 1}ℓ →
{0, 1} which requires circuits of size 2γℓ and is computable in time 2γ

′ℓ. Without loss of generality,
we will assume γ ≤ 1.

Let α ∈ (0, 1) be a constant to be set later. Set ℓ =

⌈
c

γα
log n

⌉
and set s := n

c
α , s′ := nc.

Observe that
s = 2

c
α
logn ≤ 2γℓ

and so f : {0, 1}ℓ → {0, 1} is hard for circuits of size s.
Let t :=

⌈
ℓ/ log s′

⌉
, n′ := ⌈n/(t+ 1)⌉ ,F :− GF (q := 2n

′
). Let τ : {0, 1}ℓ → [s′]t be any natural

injective map. There exists a polynomial p : Ft → F of degree at most s′ in each variable such that
for all x ∈ {0, 1}ℓ, f(x) = p(τ(x)). p can be computed in time poly(n, 2ℓ) and has total degree
≤ d := s′ · t.

Let E : {0, 1}n′×{0, 1}n′ → {0, 1}m be the function from Claim 3 satisfying (2−0.1n
′
, 20.2n

′
, 2−0.1n

′
)-

combinatorial list decoding computable in time poly(n′). We define Ext : {0, 1}n → {0, 1}m by

Ext(x, i) = E(p(x), i ◦ 0(t+1)n′−n).

Note that this exists because m ≤ ω log n ≤ 0.1n′ for all sufficiently large n.

Set ϵ :=
1

s′
. Suppose that there is a distributionX on {0, 1}n with min-entropy n·(1−(α log s′)/ℓ)

samplable by size s′ postselecting circuits such that for some x,

∣∣∣∣Pr[Extfn,ℓ,s(X) = x]− 1

2m

∣∣∣∣ ≥ ϵ

2m
.

Define X ′ = X ◦ 0(t+1)n′−n. Then X ′ has density at least

δ =
2n·(1−(α log s′)/ℓ)

2(t+1)n′

And so, as long as
m ≤ cEn′

d

q
≤ ϵ2δ2

64 · 2(0.4n′+2m)

ϵδ ≥ 128 · 2−(0.1n′−m)

applying Theorem 8 gives us that if Ext is not a

(
1

s′
, (1− α log s′/ℓ)n

)
-extractor, then we have

a circuit of size poly(s′, 2m) computing f everywhere. Then as long as poly(s′, 2m) ≤ s and the

conditions hold, then Ext is a

(
1

s′
, (1− α log s′/ℓ)n

)
-extractor against NP||-circuits of size s

′.

To begin to show these, we observe the following properties:

t =
⌈
ℓ/ log s′

⌉
=

⌈
1

γα

⌉
log s′

ℓ
≤ log s′

1
γα log s′

= γα

n′ =

⌈
n

t+ 1

⌉
≥ n

t+ 1
≥ n

2t
≥ γα

4
n

δ = 2−(t+1)n′+n−(αn log s′)/ℓ ≥ 2−(t+1)−αn log s′/ℓ ≥ 2
− 2

γα
−γα2n
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Note that the condition
d

q
≤ ϵ2δ2

64 · 2(0.4n′+2m
holds as long as

s′t

2n′ ≤
ϵ2δ2

64 · 20.4n′+2m

so it suffices to show that
64s′t

ϵ2δ2
≤ 20.6n

′−2m

But we have

64s′t

ϵ2δ2

≤ 64n3c
⌈

1

γα

⌉
2

2
γα

+γα2n

≤ 22γα
2n

where the last inequality only holds for sufficiently large n. Similarly,

20.6n
′−2m

≥ 20.4n
′

≥ 20.1γαn

But it is clear that for sufficiently small α, 2γα2n ≤ 0.1γαn.
Similarly, the condition ϵδ ≥ 128 · 2m−0.1n′

holds since

1

ϵδ

≤ n2c2
2
γα

+γα2n

≤ 22γα
2n

for sufficiently large n and
20.1n

′−m ≥ 20.04n
′ ≥ 20.01γαn

and for sufficiently small α, 22γα
2n ≤ 20.01γαn.

Thus, it remains to be seen that poly(s′, 2m) ≤ s. But as m ≤ ω log n, poly(s′, 2m) = poly(s′)
and so it is clear that there is some sufficiently small α such that poly(s′) ≤ s.

Thus, setting δ = γα2 ≥ α log s′/ℓ gives us the result.

Lemma 9 (Lemma 5.6 from [26]). There is a constant α > 0 such that the following holds.
Let X be a distribution of min-entropy n1 + n2 −∆ ranging over {0, 1}n1+n2 and let us view X as
a pair (X1, X2) where X1 ranges over {0, 1}n1 and X2 ranges over {0, 1}n2. Let X be samplable by
a postselecting circuit of size s. Let Ext1 : {0, 1}n1 × {0, 1}t → {0, 1}m1 be a (n1 −∆, ϵ) two-source
extractor, and let Ext2 : {0, 1}n2 → {0, 1}m2 be a (n2 − ∆ − log(1/ϵ), ϵ) deterministic extractor
against postselecting circuits of size sα. Then Ext(X1, X2) = Ext1(X1,Ext(X2)) is 3ϵ-close to
uniform.

Theorem 11 ( [27]). For every γ > 0, there is a constant cγ and an explicit construction of a(
(1− 2γ)n,

1

6n

)
-extractor Ext : {0, 1}n×{0, 1}t → {0, 1}m where t = cγ log n and m = (1− 3γ)n.

Combining Theorem 10, Lemma 9, and Theorem 11 gives us Theorem 2. Following the same
argument, but replacing NP||-circuits with postselecting quantum circuits gives us Theorem 3.
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